1+(7/x)=6/x^2

Simple and best practice solution for 1+(7/x)=6/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1+(7/x)=6/x^2 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

7/x+1 = 6/(x^2) // - 6/(x^2)

7/x-(6/(x^2))+1 = 0

7/x-6*x^-2+1 = 0

7*x^-1-6*x^-2+1 = 0

t_1 = x^-1

7*t_1^1-6*t_1^2+1 = 0

7*t_1-6*t_1^2+1 = 0

DELTA = 7^2-(-6*1*4)

DELTA = 73

DELTA > 0

t_1 = (73^(1/2)-7)/(-6*2) or t_1 = (-73^(1/2)-7)/(-6*2)

t_1 = (73^(1/2)-7)/(-12) or t_1 = (73^(1/2)+7)/12

t_1 = (73^(1/2)-7)/(-12)

x^-1-((73^(1/2)-7)/(-12)) = 0

1*x^-1 = (73^(1/2)-7)/(-12) // : 1

x^-1 = (73^(1/2)-7)/(-12)

-1 < 0

1/(x^1) = (73^(1/2)-7)/(-12) // * x^1

1 = ((73^(1/2)-7)/(-12))*x^1 // : (73^(1/2)-7)/(-12)

-12*(73^(1/2)-7)^-1 = x^1

x = -12*(73^(1/2)-7)^-1

t_1 = (73^(1/2)+7)/12

x^-1-((73^(1/2)+7)/12) = 0

1*x^-1 = (73^(1/2)+7)/12 // : 1

x^-1 = (73^(1/2)+7)/12

-1 < 0

1/(x^1) = (73^(1/2)+7)/12 // * x^1

1 = ((73^(1/2)+7)/12)*x^1 // : (73^(1/2)+7)/12

12*(73^(1/2)+7)^-1 = x^1

x = 12*(73^(1/2)+7)^-1

x in { -12*(73^(1/2)-7)^-1, 12*(73^(1/2)+7)^-1 }

See similar equations:

| -2x+11+3x=3+x+8 | | 1+7/x=6/x^2 | | 9x+4-8x=10 | | -23-4x=34-7x | | 16x-8(-9x)=27 | | 35=(1/2)(7)h | | -5(2-6k)=-19 | | 1/8x+7=-6 | | x-3-7x=9+6x | | p=2(14/9)+1/3 | | 5x+8(-2x)=26 | | ln(24)/ln(x)-ln(4) | | 8=3+(.50*2-4)+8 | | 9x+8x-6x=6+5 | | 5x-4y=3y-2x | | 4w-1=4w+2 | | D=F+wb | | 6(4c+7)=-25 | | (2x+3)+(4x-7)=148 | | 5x+y+z=a | | 146=61.412+2.317f | | 9+(c/-5)=-5 | | F(x)=-x^2+3x+10 | | 8x^2+9(12/3x2)-7 | | 13x-(4x-2)=11 | | 4x+5-2x-7=12 | | 4p-3=2p+8 | | 2(2z+1)-7=19 | | 24/5-4=x | | 150=61.412+2.317f | | 6x-2y=5x+7 | | 2x-3(x-4)=x+2(3x-2) |

Equations solver categories